

Synchronized Position Hold, Engage, Reorient, Experimental Satellites

> Overview April 2002

Steve Sell
Payload Systems Inc.
sell@payload.com

What is SPHERES?

SPHERES...

- Is an ISS internal testbed for the development and testing of formation flying and other multi-spacecraft control algorithms
- Consists of three self-contained eight-inch diameter freefloating satellites which perform the various algorithms
- Uses data collected from one test session to build the algorithms for the next test session
- Is an interactive testbed -- ISS crew members command & observe the programmed maneuvers

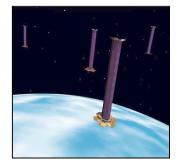
SPHERES Team

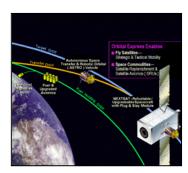
Who's involved:

- DARPA Orbital Express Program
 - Research and flight opportunity sponsor
- Massachusetts Institute of Technology
 - Principal Investigator: Prof. David Miller
 - Prototype design and testing
 - Algorithm development
- Payload Systems Inc.
 - Flight hardware design, fabrication & testing
 - Flight hardware integration & safety
- DoD Space Test Program and ISS Payload Integration Office
 - Flight manifest on ISS
 - Payload integration & safety support

Science Motivation

- To reduce cost and improve performance, many missions are considering distributed spacecraft architectures
- Routine and autonomous formation flight is essential to the operation of these missions
- Long duration µ-g is impossible to simulate in the laboratory
- Therefore, an on-orbit testbed is needed to conduct research in μ-g for maturing these technologies




StarLight

Terrestrial Planet Finder

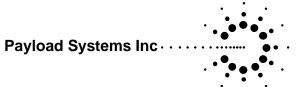
TechSat 21

Orbital Express

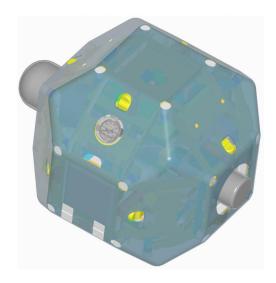
Science Objective

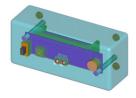
- SPHERES will serve to mature autonomous satellite formation flight, rendezvous and docking algorithms in a long duration, micro-gravity environment.
 - Allow for the interchange of control algorithms, the acquisition and analysis of data, and a truth measure
 - Demonstrate key close proximity formation flight and docking maneuvers
 - Demonstrate autonomous fault diagnosis and recovery
 - Ensure the adaptability of control algorithms to future formation flight missions

- Testing in the internal volume of ISS permits rapid algorithm iteration and dramatically reduces mission risk
 - Failed algorithm does not result in the loss of the payload
 - More likely to pursue ambitious test objectives
- ISS provides the benefits of a research laboratory-like setting, but in the microgravity environment
 - Human-in-the-loop research will allow testing to be guided along more productive routes
 - Consumables can be replenished
 - Video and crew commentary will provide valuable feedback to research team
 - Through iterative algorithm development, use last week's results to develop this week's tests



- SPHERES on ISS for two crew rotations
 - Ascent flight ISS-12A.1 (STS-116) May 2003
 - Re-supply flight ISS-13A.1 (STS-118) for replacement of consumables
 - Descent flight ISS-15A (STS-119) January 2004
- Operation time
 - Allocated 24 hours operation time (twelve 2-hour sessions with option for eight 3-hour or six 4-hour sessions)
 - Setup and tear down time not included in total operations time
- Initial stowage requirements
 - Three SPHERES satellites
 - Five Ultrasound (US) beacons
 - Laptop transmitter
 - Consumables (CO₂ tanks and battery packs)

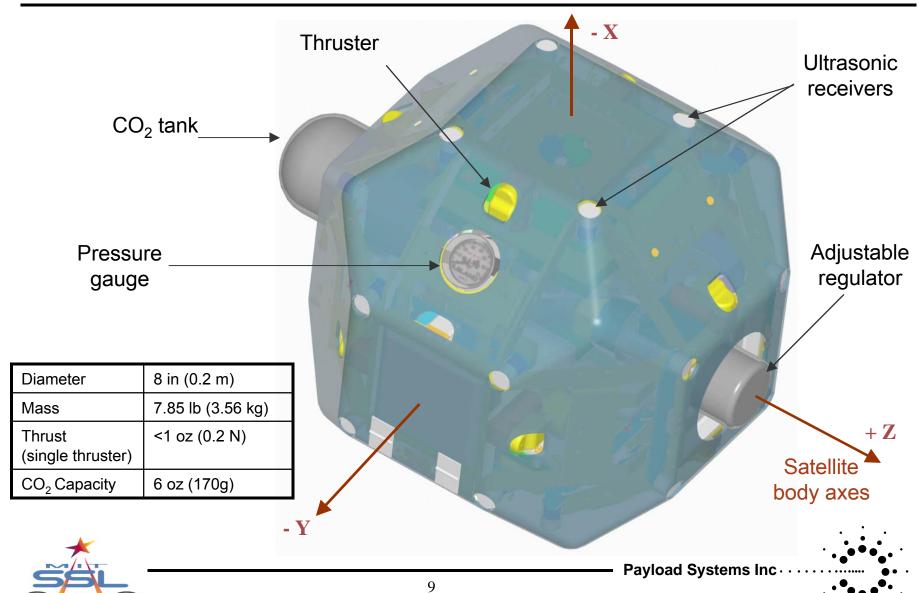



Hardware Components

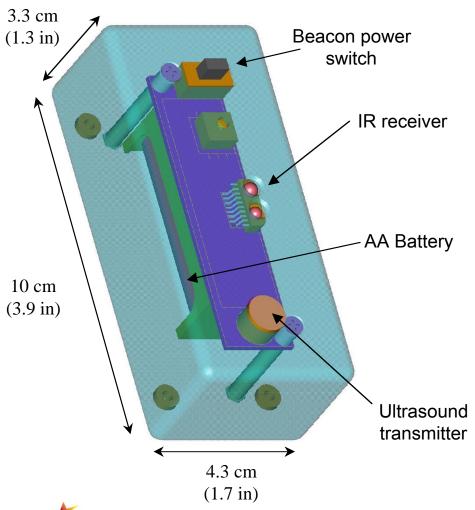
- SPHERES consists of three "satellites" eight-inches in diameter
 - Each satellite is self-contained with power (AA batteries), propulsion (CO₂ gas), computers, and navigation equipment
 - The satellites communicate with each other and an ISS laptop through a low-power wireless (RF) link
 - Operational volume is 6' x 6' x 6' (up to 10' x 10' x 10' is possible)
- Five ultrasound beacons located in the SPHERES work envelope act as a navigation system
 - Each beacon is self-contained and uses a single AA battery
 - A single beacon is approximately the size of a pager

8

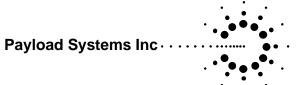
Satellite



Ultrasound (US) beacon

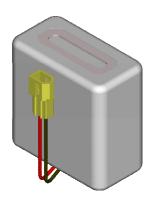


SPHERES Satellite



Ultrasound Beacon Structure

- Beacon components
 - One Infrared (IR) receiver
 - One US transmitter
 - One AA battery
 - Associated circuitry


Mass	0.25 lb (113 g)
Dimensions	1.3 x 3.9 x 1.7 in (3.3 x 10.0 x 4.3 cm)
Battery lifetime	>24hrs
US emitter frequency	40 kHz

Consumables

Replacement CO₂ tanks and battery packs

CO₂ tanks

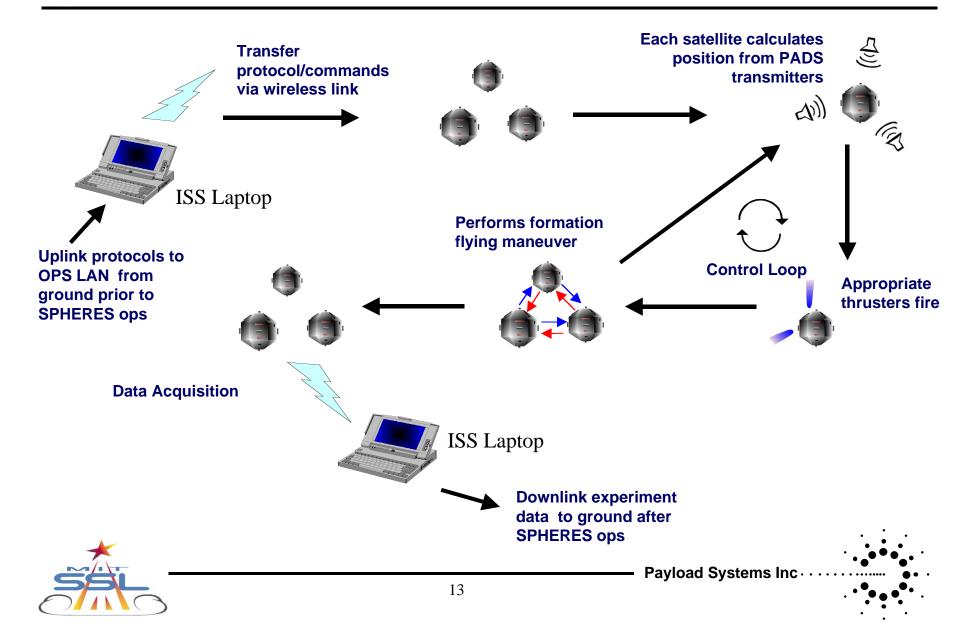
- Contain liquid CO₂
- Liquid is expanded to gas for expulsion
- Mass: 517 g
- Capacity: 170 g CO₂
- Provides ΔV of 13.2 m/s

Batteries

- 16 AA x (1.5V) alkaline batteries housed in two battery packs
- Satellites run for approximately 90 min on two battery packs

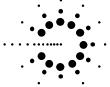
Operational Configurations

- Mode 1: Single satellite operations examples
 - Long term station-keeping
 - Minimum propellant maneuvers through pre-determined profiles
 - Isolated multidimensional rotation, multidimensional translation
 - Combined rotation & translation
- Modes 2 and 3: Multiple satellite operations examples (two or three satellites)
 - Docking
 - Topological orientations
 - Independent control
 - · Collision avoidance
 - Hierarchical control (leader-follower)
 - Distributed control (consensus)



Example configurations on the KC-135

SPHERES Typical Test Session Flow Chart



Prototype Testing on KC-135

Prototype Testing on KC-135

For More Information

Principal Investigator:

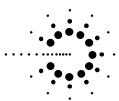
Prof. David Miller

Director, MIT Space Systems Laboratory

(617) 253-3288

millerd@mit.edu

Project Manager:


Steve Sell

Payload Systems Inc.

(617) 868-8086 x28

sell@payload.com

